Bitcoin Price Chart (BTC) Coinbase

Crypto Telegram Groups

Cryptocurrencies:
@AelfBlockchain - ELF@Aeternity - AE@ArdorPlatform - ARDR@ArkEcosystem - ARK@AugurProject - REP@BATProject - BAT@BeamPrivacy - BEAM@LetsLiveBela - BELA@BitbayOfficial - BCN@Bitcoin - BTC@BitcoinCore - BTC@BitcoinCashFork - BCH@BitcoinGoldHQ - BTG@Bitshares_Community - BTS@BSVChat - BSV@BTTBitTorrent - BTT@BytecoinChat - BCN@BytomInternational - BTM@CallistoNet - CLO@CardanoGeneral - ADA@CentralityOfficialTelegram CENNZ@CloakProject - CLOAK@ChainLinkOfficial - LINK@CosmosProject - ATOM@Counterparty_XCP - XCP@CryptoComOfficial - MCO@CyberMilesToken - CMT@Dash_Chat - DASH@Decred - DCR@Dfinity - DFN@DigiBytecoin - DGB@DigixDAO - DGD@TheDogeHouse - DOGE@Electracoin - ECA@Emercoin_Official - EMC@EnigmaProject - ENG@EOSProject - EOS@EthClassic - ETC@Ether - ETH@EUNOofficial - EUNO@Everipedia - IQ@FactomFCT - FCT@Filecoin - FIL@GnosisPM - GNO@Grincoin - GRIN@Groestl - GRS@Hyperledger@IOTAtangle - IOTA@KomodoPlatform_Official - KMD@KyberNetwork - KNC@LAToken - LA@Litecoin - LTC@MaidSafeCoin - MAID@MakerDAOOfficial - MKR@Monero - XMR@Namecoin - NMC@Navcoin - NAV@Nemred - XEM@Neo_Blockchain - NEO@NervaXNV - XNV@Nimiq - NIM@NxtCommunity - NXT@OmiseGo - OMG@OmniLayer - OMNI@OntologyNetwork - ONT@Peercoin - PPC@PolymathNetwork - POLY@QtumOfficial - QTUM@RavencoinDev - RVN@Ripple - XRP@RSKOfficialCommunity - RIF@Siacoin - SIA@SirinLabs - SRN@Sonm_Eng - SNM@StellarLumens - XLM@StratisPlatform - STRAT@TezosPlatform - XTZ@TronNetworkEN - TRX@UnobtaniumUNO - UNO@Vechain_Official_English - VET@VertcoinCrypto - VTC@Viacoin - VIA@ViberateOfficial - VIB@VSYSOfficialGroup - VSYS@WavesCommunity - WAVES@ZB_English - ZB@ZCashco - ZEC@ZClassicCoin - ZCL@ZCoinProject - XZC

Crypto Communities:
@Aetrader - EN@Allemaalrijk - NL@Altcoins - EN @ArgenPool - ES@AussieCrypto - EN @UKBitcoin - EN@Binarydotcom - EN@BitcoinChat - EN @BitcoinInvestimento - PT @BitNovosti - RU @BitUniverse - EN@BlockhcainMinersGroup - EN@BsodPool - RU@BTCFinland - EN@BTChat - RU@BullBearr - EN@CoinFarm - EN @CoinGecko - EN @CoinMarketCap - EN @CoinPaprika - EN @CrypticIndia - EN@Crypto_CN - ZH @Crypto_ON - RU @CryptoAdvisorOfficial - EN@CryptoAquarium - EN @CryptoBeats - EN @CryptoBoerderij - NL @CryptoCharity - EN@CryptoCoinClub - EN@CryptoExpo_Moscow - RU@CryptoGene - EN@CryptoGifs - EN @CryptoGurusOfficial - EN@CryptoInsidersLobby -@CryptoHispanonet - ES@CryptoMining - EN @CryptoMondayDE - DE@CryptoOnMining - RU@CryptoRomania - RO @CryptoTipsChatFR - EN@CrypVision - DE @ElijaBoomC - EN@FanaticosCriptos - PT @ICOCountdown - EN@ILoveNina - EN@IndiaBits - EN @Kampungkoin - EN@KriptoTurkiye - TR @KryptoCoinsDE - DE@KryptoDETrading - DE @KryptoVerSteuerung - DE@MinerSpeak - EN@MiningBazar - RU @MMCryptoENG - EN@RepublicCrypto - EN@SideChains - EN@SmartContracts - EN@SportsBet - EN @StrapeCharts - EN@TamilBTC - EN@TheCoinFarm - EN @TheCryptoMob - EN@TokenMarket - EN@TrezorTalk - EN@Trollbox - EN @WCSETalks - EN@WhaleClub - EN (Invite Only)@WhaleClubClassRoom - EN@WhalePoolBTC - EN @WhaleTankChat - EN@XMRMine - EN
Crypto News Channels:
@AltCoin - EN@Avalbit - EN@Bit_Novosti - RU @BitcoinBravado - EN @BitcoinChannel - EN@BitcoinExchangeGuide - EN@BitcoinMagazinebot - EN @BitOracle - RU@BitRu - RU@CDiamonds - EN@Coin_Analyse - DE@CoinCentral - EN@CoinDesk - EN @CoinGape - EN@CoinNewsChannel - EN@CoinNewsDE - DE@CoinTelegraph - EN @Cointified - EN @Cripto247 - ES@CriptoNoticias - ES @Crypto_News_Channel - EN@CryptoAlerts - EN @CryptoAMB - EN@CryptoAsiaNews - ZH @CryptoChan - RU@CryptoClubAlerts - EN@CryptoCurrency - EN@CryptoExplorerChannel - EN@CryptoMartez - EN@CryptoNinja_News - EN@CryptoNyka - RU@CryptoRankNews - EN @CryptoSentinel - EN@CryptoSeson2020 - EN@CryptoSlateNews - EN@CryptoSnippets - EN@DecentralBox - DE @ForkLog - RU @JingBao - ZH @Krepta_News - RU@Krypto_Deutschland - DE@KryptoNachrichten - DE@NewCryptoJournal - EN@MGonCrypto - EN @OneMinuteLetter - EN@RichardsCalls - EN@SmartLiquidNews - EN@TheBCJ - RU @TONorg - EN @Unfolded - EN @WhalebotAlerts - EN @Xblockchain - FA

Trading Analysis:
@Altchica - EN@AltcoinWhales - EN @AnhemTrader - VI@Bitafta - EN@CacheStation - EN @Checksig - EN @CryptoCharters - EN @CryptoCredTA - EN @CryptoInMinutes - EN@CryptoScanner100Eyes - EN @ExcavoChannel - EN@KXiantu - ZH @Pierre_Crypt0_Public - EN@PsychoChromatic - EN @SalsaTekila - EN@ScalpingMF - EN@T45Investments - RU@TASmartAlerts - EN@TheLionDen - EN@TraderMillClub - EN@WCSEChannel - EN@WCSERussia - RU@WhaleTank - EN@WinterWolvesTA - EN @WolfPackSignals - EN
Indicator Bots:
@Crypto_Scanner - EN@CryptoQuantBotChannel - EN@BitmexRekts - EN@BounceBotBin - EN@Coin_Pulse - EN@Coin_Pulse_Listing - EN@CoinTrendz - EN @CryptoChan_HighLowPulse - EN @DataLightMe - EN@WallMonitor - EN @Whale_Alert_io - EN @WhaleCalls - EN @WhalepoolBTCFeed - EN @WhaleSniper - EN
submitted by Aztek_btc to cryptogroups [link] [comments]

A reminder why CryptoNote protocol was created...

CryptoNote v 2.0 Nicolas van Saberhagen October 17, 2013
1 Introduction
“Bitcoin” [1] has been a successful implementation of the concept of p2p electronic cash. Both professionals and the general public have come to appreciate the convenient combination of public transactions and proof-of-work as a trust model. Today, the user base of electronic cash is growing at a steady pace; customers are attracted to low fees and the anonymity provided by electronic cash and merchants value its predicted and decentralized emission. Bitcoin has effectively proved that electronic cash can be as simple as paper money and as convenient as credit cards.
Unfortunately, Bitcoin suffers from several deficiencies. For example, the system’s distributed nature is inflexible, preventing the implementation of new features until almost all of the net- work users update their clients. Some critical flaws that cannot be fixed rapidly deter Bitcoin’s widespread propagation. In such inflexible models, it is more efficient to roll-out a new project rather than perpetually fix the original project.
In this paper, we study and propose solutions to the main deficiencies of Bitcoin. We believe that a system taking into account the solutions we propose will lead to a healthy competition among different electronic cash systems. We also propose our own electronic cash, “CryptoNote”, a name emphasizing the next breakthrough in electronic cash.
2 Bitcoin drawbacks and some possible solutions
2.1 Traceability of transactions
Privacy and anonymity are the most important aspects of electronic cash. Peer-to-peer payments seek to be concealed from third party’s view, a distinct difference when compared with traditional banking. In particular, T. Okamoto and K. Ohta described six criteria of ideal electronic cash, which included “privacy: relationship between the user and his purchases must be untraceable by anyone” [30]. From their description, we derived two properties which a fully anonymous electronic cash model must satisfy in order to comply with the requirements outlined by Okamoto and Ohta:
Untraceability: for each incoming transaction all possible senders are equiprobable.
Unlinkability: for any two outgoing transactions it is impossible to prove they were sent to the same person.
Unfortunately, Bitcoin does not satisfy the untraceability requirement. Since all the trans- actions that take place between the network’s participants are public, any transaction can be unambiguously traced to a unique origin and final recipient. Even if two participants exchange funds in an indirect way, a properly engineered path-finding method will reveal the origin and final recipient.
It is also suspected that Bitcoin does not satisfy the second property. Some researchers stated ([33, 35, 29, 31]) that a careful blockchain analysis may reveal a connection between the users of the Bitcoin network and their transactions. Although a number of methods are disputed [25], it is suspected that a lot of hidden personal information can be extracted from the public database.
Bitcoin’s failure to satisfy the two properties outlined above leads us to conclude that it is not an anonymous but a pseudo-anonymous electronic cash system. Users were quick to develop solutions to circumvent this shortcoming. Two direct solutions were “laundering services” [2] and the development of distributed methods [3, 4]. Both solutions are based on the idea of mixing several public transactions and sending them through some intermediary address; which in turn suffers the drawback of requiring a trusted third party. Recently, a more creative scheme was proposed by I. Miers et al. [28]: “Zerocoin”. Zerocoin utilizes a cryptographic one-way accumulators and zero-knoweldge proofs which permit users to “convert” bitcoins to zerocoins and spend them using anonymous proof of ownership instead of explicit public-key based digital signatures. However, such knowledge proofs have a constant but inconvenient size - about 30kb (based on today’s Bitcoin limits), which makes the proposal impractical. Authors admit that the protocol is unlikely to ever be accepted by the majority of Bitcoin users [5].
2.2 The proof-of-work function
Bitcoin creator Satoshi Nakamoto described the majority decision making algorithm as “one- CPU-one-vote” and used a CPU-bound pricing function (double SHA-256) for his proof-of-work scheme. Since users vote for the single history of transactions order [1], the reasonableness and consistency of this process are critical conditions for the whole system.
The security of this model suffers from two drawbacks. First, it requires 51% of the network’s mining power to be under the control of honest users. Secondly, the system’s progress (bug fixes, security fixes, etc...) require the overwhelming majority of users to support and agree to the changes (this occurs when the users update their wallet software) [6].Finally this same voting mechanism is also used for collective polls about implementation of some features [7].
This permits us to conjecture the properties that must be satisfied by the proof-of-work pricing function. Such function must not enable a network participant to have a significant advantage over another participant; it requires a parity between common hardware and high cost of custom devices. From recent examples [8], we can see that the SHA-256 function used in the Bitcoin architecture does not posses this property as mining becomes more efficient on GPUs and ASIC devices when compared to high-end CPUs.
Therefore, Bitcoin creates favourable conditions for a large gap between the voting power of participants as it violates the “one-CPU-one-vote” principle since GPU and ASIC owners posses a much larger voting power when compared with CPU owners. It is a classical example of the Pareto principle where 20% of a system’s participants control more than 80% of the votes.
One could argue that such inequality is not relevant to the network’s security since it is not the small number of participants controlling the majority of the votes but the honesty of these participants that matters. However, such argument is somewhat flawed since it is rather the possibility of cheap specialized hardware appearing rather than the participants’ honesty which poses a threat. To demonstrate this, let us take the following example. Suppose a malevolent individual gains significant mining power by creating his own mining farm through the cheap hardware described previously. Suppose that the global hashrate decreases significantly, even for a moment, he can now use his mining power to fork the chain and double-spend. As we shall see later in this article, it is not unlikely for the previously described event to take place.
2.3 Irregular emission
Bitcoin has a predetermined emission rate: each solved block produces a fixed amount of coins. Approximately every four years this reward is halved. The original intention was to create a limited smooth emission with exponential decay, but in fact we have a piecewise linear emission function whose breakpoints may cause problems to the Bitcoin infrastructure.
When the breakpoint occurs, miners start to receive only half of the value of their previous reward. The absolute difference between 12.5 and 6.25 BTC (projected for the year 2020) may seem tolerable. However, when examining the 50 to 25 BTC drop that took place on November 28 2012, felt inappropriate for a significant number of members of the mining community. Figure 1 shows a dramatic decrease in the network’s hashrate in the end of November, exactly when the halving took place. This event could have been the perfect moment for the malevolent individual described in the proof-of-work function section to carry-out a double spending attack [36]. Fig. 1. Bitcoin hashrate chart (source: http://bitcoin.sipa.be)
2.4 Hardcoded constants
Bitcoin has many hard-coded limits, where some are natural elements of the original design (e.g. block frequency, maximum amount of money supply, number of confirmations) whereas other seem to be artificial constraints. It is not so much the limits, as the inability of quickly changing them if necessary that causes the main drawbacks. Unfortunately, it is hard to predict when the constants may need to be changed and replacing them may lead to terrible consequences.
A good example of a hardcoded limit change leading to disastrous consequences is the block size limit set to 250kb1. This limit was sufficient to hold about 10000 standard transactions. In early 2013, this limit had almost been reached and an agreement was reached to increase the limit. The change was implemented in wallet version 0.8 and ended with a 24-blocks chain split and a successful double-spend attack [9]. While the bug was not in the Bitcoin protocol, but rather in the database engine it could have been easily caught by a simple stress test if there was no artificially introduced block size limit.
Constants also act as a form of centralization point. Despite the peer-to-peer nature of Bitcoin, an overwhelming majority of nodes use the official reference client [10] developed by a small group of people. This group makes the decision to implement changes to the protocol and most people accept these changes irrespective of their “correctness”. Some decisions caused heated discussions and even calls for boycott [11], which indicates that the community and the developers may disagree on some important points. It therefore seems logical to have a protocol with user-configurable and self-adjusting variables as a possible way to avoid these problems.
2.5 Bulky scripts
The scripting system in Bitcoin is a heavy and complex feature. It potentially allows one to create sophisticated transactions [12], but some of its features are disabled due to security concerns and some have never even been used [13]. The script (including both senders’ and receivers’ parts) for the most popular transaction in Bitcoin looks like this: OP DUP OP HASH160 OP EQUALVERIFY OP CHECKSIG. The script is 164 bytes long whereas its only purpose is to check if the receiver possess the secret key required to verify his signature.
Read the rest of the white paper here: https://cryptonote.org/whitepaper.pdf
submitted by xmrhaelan to CryptoCurrency [link] [comments]

Bitcoin Technical Analysis #1 (8/29/2017) — 1 Week

Hi guys. This is the second article on my blog where I do some TA to BTC charts (1 week in this case).
Enjoy!
https://checksig.org/bitcoin-ta-1-1849ade30b87
submitted by felipezavan to BitcoinMarkets [link] [comments]

#meetourmember Giulio Massucci (Wavenure) Bitcoin Price Charts 2017.02.19 Bitcoin Price Soaring While Deutsche Bank Crumbling - YouTube Sierra Chart-How to use the Trading DOM. - YouTube BITCOIN NEXT RALLY !?!?bitcoin litecoin price prediction, analysis, news, trading

CHECKSIG. General; Technical; Financial; Português; Follow Following. Bitcoin Technical Analysis #1 (8/15/2017) Bitcoin Technical Analysis #1 (8/15/2017) The second article of a series of articles where I analyse the Bitcoin weekly, daily and hourly charts. Felipe Zavan. Aug 29, 2017. A Technical Analysis checklist. A Technical Analysis checklist. This is a checklist of things you should ... Prices Charts Correlations Layout: Horizontal / Vertical. Share: btc eth xrp bch ltc bsv xmr zec dash etc doge btg rdd vtc nmc blk ftc nvc bat sun dgb sc hot plc top bet sys ghost bcc uno isr soc nav via xst wdc pxc cloak exe emc2 spc cc vrc cat pot slr net 888 sxc btcs aur sty con air zet. Bitcoin (Explorer, top100) Ethereum: XRP: Bitcoin Cash (Explorer, top100) Litecoin (Explorer, top100 ... This week has been an exciting one for bitcoin. Crypto’s largest asset finally broke through a difficult zone and held above it. Let’s see what the charts say now that the dust has settled a bit! 1-Week chart Image Courtesy: TradingView.com. Bitcoin’s weekly chart shows the 200-week moving average (MA) as a possible support area, well ... Digital money that’s instant, private, and free from bank fees. Download our official wallet app and start using Bitcoin today. Read news, start mining, and buy BTC or BCH. Check Bitcoin (BTC) address 1K4XxLfByfWXCqc8EfJYEwMT1aU3eMpq5Z balance and its transactions

[index] [9888] [45518] [27014] [51278] [49684] [24344] [11283] [43007] [19149] [37912]

#meetourmember Giulio Massucci (Wavenure)

🔥BITCOIN and LITECOIN UPDATE🔥 🌟 https://bidaochain.com 🌟 🔥My wife's crypto merch page https://inkurimage.com 🔥 🌟FREE CRYPTO MEET UP IN CLEVELAND OHIO 👇👇👇 htt... http://mychartphotos.blogspot.ca View and Download the Charts I show with above link My BTC Wallet Bitcoin Address 1bUUj1qbkadvN18tmkAVm53SoWmRp4PkS 0.357 BT... WILL LITECOIN LEAD BITCOIN OUT OF THIS CORRECTION (BULL FLAG) Don't forget to help the channel out by checking out the affiliate links below, Thanks for your support! TIP JARS BTC ... Bitcoin price is up on news of Deutsche Bank starting lay offs, Singapore looks set to welcome crypto for retail, and South Korean crypto craze continues! GR... BITCOIN and LITECOIN DAILY UPDATE!! AND SIGN GIVE AWAY TO CELEBRATE 10K subs!!! Don't forget to help the channel out by checking out the affiliate links below, Thanks for your support! TIP JARS ...

#